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Abstract

Weighted directed graphs are useful models for several types of applications
involving material or digital elements flowing through an interconnected network.
What settings will maximize the amount of elements flowing from source to
destination? Complex interactions involving the flow at junctions (or nodes of the
network graph) made network flow problems difficult to solve for 50 years.

To our knowledge, no attempt had yet been made to leverage the framework of
category theory to model such networks. The benefit would be the unification,
clarification and efficiency in the mathematics analyzing such systems, so that we are
able to extract the structure of flow networks. This could serve as the foundation of
the automatic generation of optimised algorithms traversing such networks. To do so,
firstly, we set out to provide an understanding of graphs and their categorisation. This
allows to provide the category of a network which we will be using. This would be the
initial building block of the presentation of the category of flow networks, as each
category form a different network. Secondly, with the formed monoidal category, an
equivalence relation is needed to define the relationship between different networks.

The algebraic approach to graph rewriting is based upon category theory. Therefore,
the result of this research has the potential to be the enabler of the build and run of a
generator of strings that would be specifying any flow network while minimising the
complexity of the systems required to deliver such a solution.
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1 Introduction

Optimising the traversing of a flow of material, and now immaterial or digital elements,
through a network from a source to a target has been extensively researched in the second
part of 20th century. Flow networks are directed graphs where each edge has a capacity
assigned to it. They are used to represent programs where finite data is transferred between
two points, whether it be to model the dispatch of merchandise within a railroad network,
circulation in water pipes, traffic in computer networks, or trust in social networks. The
maximum flow that can pass through such a network can be measured, and many algorithms
compute it.

One of the first algorithm to find the maximum flow is the Ford–Fulkerson method
(Ford–Fulkerson algorithm or FFA) and it guarantees to find the maximum value.
In this thesis we will aim to categorize the mathematical object of flow networks.

1.1 Specific Problem

Unfortunately, flow networks can become too complex to measure the total data that flows
in it. When composing a network, usually what is important is the output of the system, the
evaluation. In network problems, one is always searching for the computation of an output
with regards to a given system. However, when the network becomes too convoluted then
the evaluation can be difficult to measure. There are numerous algorithms that are used to
compute the maximum flow or any other properties of a network but, as with any algorithms,
all of them fall short when we are dealing with large numbers. So a deep understanding
of the system is needed before any improvements can be made. Which is where category
theory comes in, to have a deeper comprehension of the components of flow networks, which
could in turn, in further research, could be applied to the works of flow maximisation.

1.2 Outline

The methodology that we propose to use to solve such challenges is the category theory
framework. Category theory is a relatively new adjunction of the field of mathematics
that is explained by its evolution since the beginning of the 19th century. Category theory
was founded in the mid 1940’s by S. MC LANE and S. EILENBERG, with the lofty goals
of unification, clarification and efficiency in mathematics, then leveraging their immense
predictive power.

So, using this approach, we begin our thesis by setting out to provide an application of
category theory to graphs. But first, an understanding of the components of graphs and
the theory of category theory is required as the category of network will be comprised using
it. At this stage, only simple networks are defined which leaves out the most important
properties of flow networks, the capacitance. This is why an additional category of weighted
networks will be built upon the category of simple networks. This allows to provide the
category of network which we will be using for the category of flow networks. Following our
category of weighted networks, we need to understand what flow means in this scenario. An
additional category, a category of observations of flow, will then be constructed in parallel.
Thanks to the category of weighted networks and observations we are now able to attach the
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concept of flow to a network with capacitance. Thus, completing flow networks. This would
be the initial building block of the presentation of the category of flow networks, as each
category form a different network and thanks to the generators and their relations provided
by the presentation, we would be able to construct any flow network needed.

1.3 Summary

Finally, after all the steps taken to discuss in great detail the category of flow networks
and the equivalence of flow networks, a presentation of the category of flow networks could
be established, which would be completed by the generators and the relations between the
generators to provide for the composition any flow network. Indeed, the algebraic approach
to automated graph rewriting is based upon category theory. Hence, the theory made in
this thesis, now coupled with rewriting theory, could potentially simplify the work needed
to compute the ”answer” to the problem, in our case that would be finding the maximum
flow.

It is though worth remembering that the evaluation of a network is not the only important
dimension to monitor. Leveraging the complexity framework, the present theory of flow
networks can help simplify complex systems and determine its complexity, keeping in mind
that the complexity of the diagrams, and more specifically the complexity of the circuits, is
one of the key points to address. [BI16]

As an overall conclusion, and perhaps most importantly, with the result of this research, we
will lead the path to enable the build and run of a generator of flow networks; this object
specifying any optimized flow network, while minimizing the complexity of the systems
required to deliver such a solution.

2 Flow Networks

2.1 Statements of Problem

Definition 1. As defined by L. R. Ford Jr. [For56], a network flow is a collection of nodes
Pi for i ∈ [| 0, N |], some of which may be joined by an edge eij ∈ E joining Pi to Pj where
E is the set of all edges. Associated to each arc is a capacity cij and a length lij which could,
according to different situations, represent the distance or the time required to go from Pi
to Pj , but the length will not be used in this thesis. Networks described by Ford also have
an origin P0 and a terminal PN . The flow from Pi to Pj is denoted as xij ≥ 0. Furthermore,
xF is the maximum flow that passes through P0 and his work consisted of maximizing this.

∑
j

x0j −
∑
j

xj0 = xF

2.2 Properties

However, some properties relating to flow networks are needed for the following work to
function as what was found in this bachelor thesis pertains to networks that are in accordance
to flow network rules.
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In a flow network, for every node Pj , the flow that goes into it is equal to the flow out of
that node:

∑
i|eij∈E

xij =
∑

w|ejw∈E

xjw

We also have that the flow running through an edge cannot exceed the capacity of that
edge:

∀i, j ∈ [| 0, N |] | eij ∈ E, cij ≤ xij

3 The Category of Flow Networks

Now that we have established a basis of what a flow network is, we can now apply the tools
of category theory to abstract its mathematical structure.

Therefore, in this Chapter, in order to establish the category of flow networks, we will need
to look at the category of graphs in general and see how it can be applied to networks.

3.1 Definitions

It is important, however, to look at the basic definitions of category theory, from categories
to natural transformations. Definitions in this Chapter get some of their inspiration from
Tom Leinster [Lei14] and Saunders Mac Lane [ML71].

3.1.1 Categories

Definition 2. A category C consists of:

• A collection of objects which are written as ob(C)

• For each pair A,B ∈ ob(C), a collection C(A,B) of morphisms from A to B.

• We now need to define composition such that for each A,B,C ∈ ob(C), the composition
law is

C(B,C)× C(A,B)→ C(A,C)
(g, f) 7→ g ◦ f

• For each A ∈ ob(C), there exists an element 1A ∈ C(A,A) called the identity.

• We need the composition to be associative, meaning that for f ∈ C(A,B), g ∈ C(B,C)
and h ∈ C(C,D)

(h ◦ g) ◦ f = h ◦ (g ◦ f)

• The identity has to be neutral, meaning that for each f ∈ C(A,B), we have that

f ◦ 1A = f = 1B ◦ f
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3.1.2 Functors

When given mathematical objects, it is always sensible to ask how to map between said
objects. Here, functors go from a category to another. To define what a functor F is, we
will need to instantiate two categories C and D such that F : C → D.

Definition 3. This map consists of:

• A function between the objects of the categories ob(C) → ob(D), where for an item
C ∈ C we have C 7→ F (C).

• Two elements C,C ′ ∈ C, a map C(C,C ′)→ D(F (C),F (C ′)) written as f 7→ F (f).

We then need the following axioms to be satisfied:

• F (f ◦ f ′) = F (f) ◦ F (f ′) whenever we have C f ′−→ C ′
f−→ C ′′ for C,C ′, C ′′ ∈ ob(C)

• For C ∈ ob(C), we have F (1C) = 1F (C).

3.1.3 Natural Transformations

We know that functors represent maps between categories but there exists a notion of maps
between functors, called natural transformations. Let two categories A and B, such that
there exists two functors F and G between the two categories (as shown in figure 1).

Definition 4. A natural transformation α : F → G is a family F (A) αA−−→ G(A))A∈A of
maps B such that for every map A f−→ A′ in A, the square (shown in figure 2) commutes.

A
F //

G
// B

Figure 1: Functor relations between two categories

F(A)
F(f)

//

αA

��

F(A′)
αA′

��

G(A)
G(f)

// G(A′)

Figure 2: Natural transformation commutative property

Having established the category theory theoretical definitions, we are now ready to progress
to the thesis, starting with the category of directed graphs

3.2 Category of Graphs

Before moving to the category of networks, we have to look at the category of directed
graphs. We know that a directed graph has vertices and edges that go from one vertex to
another but not necessarily in reverse.
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Definition 5. Using as a basis B. Bollobas [Bol98] and L. H. Harper [Har80b], we define a
directed graph to have the following properties:

• A set of vertices V .

• A set of edges E;

• A function δ+ that maps an edge to the vertex which is at the head of the edge.

• A function δ− that maps an edge to the vertex which is at the tail of the edge.

To complete the category of directed graphs, we need to introduce a second category, the
category Set.

Definition 6. Using as support the work from Mac Lane [ML71], we can define the Category
Set as follows:
The category Set denotes the category whose objects are all sets, the morphisms between
two sets are the set of functions and the composition is the regular composition of functions.

Therefore, the Category of directed graphs or Digraphs is the functor category whose
domain is the diagram category and the codomain is the Set category (as shown in figure
4)

E

δ+
&&

δ−

88 V

Figure 3: Diagram Category

Funct(E ⇒ V, Set)

Figure 4: Category of directed graphs

3.3 Proof of Digraphs

Proof. To prove the Category of directed graphs, let us denote C the category of diagrams
with objects E and V and morphisms δ+ and δ−. Then denote the functor from C to Set
as F : C → Set.

This means that we have:

• F (E) which is the set of edges in a new graph.

• F (V ) which is the set of vertices in a new graph.

• F (δ+)(e) which represents the function that maps an edge e ∈ E to its head vertex
v ∈ V in a new graph.
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• F (δ−)(e) which represents the function that maps an edge e ∈ E to its tail vertex
v ∈ V in a new graph.

To complete the Category of graphs Digraphs we need morphisms which are going to be
natural transformations. Denote two graphs G1 and G2 with the following functions between
sets of edges and functions between sets of vertices.

G1 G2

E1

δ1−

��

δ1+

��

FE //E2

δ2−

��

δ2+

��
V1 FV

// V2

Figure 5: Functor relations between two graphs

Consider the construction of the graphs. To go from one graph to another, we need the
functor of the set of vertices of the head of the edge for the first graph to be equal to the
head of the functor of the set of edges of an edge for the second graph, similarly to the tail
of an edge (as shown in figure 6).

x

  

e // y

""

a F (x)
F (e)

// F (y)

Figure 6: Functor relations between two graphs

Meaning that

fV (δ1+(e)) = δ2+(fE(e))

fV (δ1−(e)) = δ2−(fE(e))

Which proves the commutative law needed for natural transformations.

3.4 Properties
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Now we have to expand on the category of digraphs to reach the stage where we build
the category of networks. The particularity of a network, that was not defined in the
category of graph, but is needed for the composition of networks, is the fact that they have
entry and exit vertices. Therefore we need to incorporate these properties and define the
category of networks in terms of the sources and sinks (as show in figure 7).

Figure 7: Example of a network

3.5 The Category of Networks

Definition 7. Network theory is the study of graphs as a representation of either
symmetric relations (undirected graphs) or asymmetric relations (directed graphs) between
discrete objects.

In computer science and network science, network theory is a part of graph theory:
a network can be defined as a graph in which nodes and/or edges have attributes (e.g.
names). It could be also regarded as a weighted directed graph.

Definition 8. For the purpose of our research here, we call a network to be a simple
network if it is a directed graph, or a weighted network if it is a weighted directed
graph.

In this Chapter, we discuss flow networks (or transportation networks) by imposing
additional properties to our definition of a weighted network.

Definition 9. From here we can then construct the category N of simple networks
with the following properties:

• ob(N ) = N

• (∀)m,n ∈ ob(N ), we define the morphisms N (m,n) the set of graphs (V,E, s, t, S, T )
with m "entries" and n "exits" such that:

– V is the set of vertices of the network.

– E is the set of edges of the network.

– A function s that maps an edge to the vertex which is at the head of the edge.

– A function t that maps an edge to the vertex which is at the tail of the edge.

– S is a subset of V , called entry vertices, endowed with a specified total order
such that |S| = m.
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– T is a subset of V , called exit vertices, endowed with a specified total order
such that |T | = n.

– S and T are disjoint non-empty subsets of V .

Observation 10. We need to have a total order for the set of vertices in Definition 9 as
otherwise the composition could change the structure of the graph if there is no clear order
of the vertices. As a result, the composition between two graphs will always be the same.
As shown in figure 8, if we did not have a total order for the sets of sources and sinks couple
with a bijective function, then a different network could result when composing the same
two networks.

Figure 8: Example of why a total order is needed

To complete the category of networks we need to define composition of the morphisms of
the category and the identity.

Definition 11. We then assign the following composition to our category N , letm,n, o ∈
ob(N ). Now let

• (V1, E1, s, t, S1, T1) ∈ N (m,n)

• (V2, E2, s, t, S2, T2) ∈ N (n, o)

Therefore

C(n, o)× C(m,n)→ C(m, o)
((V2, E2, s, t, S2, T2), (V1, E1, s, t, S1, T1)) 7→ (V3, E3, s, t, S3, T3)

(1)

Such that V3 = (V1 t V2) \ {(x, 1) | x ∈ T1} where the disjoint union is associative up to
isomorphisms therefore for a set A,B and C, we have that A t (B t C) = (A tB) t C.

Observation 12. The reason why we require a disjoint union and not a union is because if
we use two networks with some vertices that equal, the union would unify the two sets and
information would be lost. This is due to the fact that there cannot be any duplicates in
sets. With the disjoint union, then all of the vertices are preserved through union.

Let f : T1 → S2 a bijective function that maps the ith element of T1 to the ith element of
S2. Therefore we have that E3 = (E1∪E2) where (∀e ∈ E1 such that t(e) ∈ T1, then t(e) =
f(t(e))). We also have that S3 = S1 and T3 = T2.

This means that all the exit vertices of a first graph are replaced by the entry vertices of
the second graph and the edges of the first graph are reorganised accordingly (as shown in
figure 9).

13



S3

S2

S1

x2

x1

y2

y1

T4

T3

T2

T1

⇒

S3

S2

S1

y2

y1

T4

T3

T2

T1

G1 G2 G3

Figure 9: Example of composition of networks

Definition 13. To complete the category N , the identity of morphisms, will be formed
as followed: Let m ∈ ob(N ), the identity is then

(V, ∅, s, t, S, S) ∈ N (m,m) ,

where S = T = V (as shown in figure 10).

Figure 10: Network identity

This means that for the identity we identify the entry vertices, S, with the exit vertices, T ,
because there are no edges between S and T . Both S and T are the size of V , because the
identity has no other vertices.

3.6 Proof of the Category of Simple Networks

To prove that what we constructed is indeed a category, we need to prove the associativity
and identity of the composition.
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Proof of the Composition

Proof. Let us first show that the composition is indeed associative: Take
m,n, o, p ∈ ob(N ) such that (V1, E1, s, t, S1, T1) ∈ N (m,n), (V2, E2, s, t, S2, T2) ∈ N (n, o)
and (V3, E3, s, t, S3, T3) ∈ N (o, p).

Therefore we want to show that

((V3, E3, s, t, S3, T3) ◦ (V2, E2, s, t, S2, T2)) ◦ (V1, E1, s, t, S1, T1) =

(V3, E3, s, t, S3, T3) ◦ ((V2, E2, s, t, S2, T2) ◦ (V1, E1, s, t, S1, T1))

First left us compute the left hand side of the equality:

((V3, E3, s, t, S3, T3) ◦ (V2, E2, s, t, S2, T2)) ◦ (V1, E1, s, t, S1, T1) =

((V2 t V3) \ {(x, 1) | x ∈ T2}, (E2 ∪ E3), s, t, S2, T3) ◦ (V1, E1, s, t, S1, T1) = (!)

(V1 t ((V2 t V3) \ {(x, 1) | x ∈ T2}) \ {(x, 1) | x ∈ T1}, E1 ∪ E2 ∪ E3, s, t, S1, T3) = (!!)

(((V1 t (V2 t V3)) \ {(x, 1) | x ∈ T2}) \ {(x, 1) | x ∈ T1}, E1 ∪ E2 ∪ E3, s, t, S1, T3) =

((V1 t (V2 t V3)) \ ({(x, 1) | x ∈ T2} ∪ {(x, 1) | x ∈ T1}), E1 ∪ E2 ∪ E3, s, t, S1, T3)

(!) Such that (∀e ∈ E2 | t(e) ∈ T2 then t(e) = f(t(e)))
(!!) Such that (∀e ∈ E1 | t(e) ∈ T1 then t(e) = f(t(e)))

Now let us compute the right hand side of the equality:

(V3, E3, s, t, S3, T3) ◦ ((V2, E2, s, t, S2, T2) ◦ (V1, E1, s, t, S1, T1)) =

(V3, E3, s, t, S3, T3) ◦ ((V1 t V2) \ {(x, 1) | x ∈ T1}, (E1 ∪ E2), s, t, S1, T2) = (!)

((((V1 t V2) \ {(x, 1) | x ∈ T1}) t V3) \ {(x, 1) | x ∈ T2}, E1 ∪ E2 ∪ E3, s, t, S1, T2) = (!!)

((((V1 t V2) t V3) \ {(x, 1) | x ∈ T1}) \ {(x, 1) | x ∈ T2}, E1 ∪ E2 ∪ E3, s, t, S1, T2) =

((((V1 t V2) t V3) \ ({(x, 1) | x ∈ T1}) ∪ {(x, 1) | x ∈ T2}), E1 ∪ E2 ∪ E3, s, t, S1, T2)

(!) Such that (∀e ∈ E1 | t(e) ∈ T1 then t(e) = f(t(e)))
(!!) Such that (∀e ∈ E1 ∪ E2 | t(e) ∈ T2 then t(e) = f(t(e)))

Since we have assumed that the disjoint union was associative up to isomorphisms, then

((V1 t (V2 t V3)) \ ({(x, 1) | x ∈ T2} ∪ {(x, 1) | x ∈ T1}), E1 ∪ E2 ∪ E3, s, t, S1, T3) =

((((V1 t V2) t V3) \ ({(x, 1) | x ∈ T1}) ∪ {(x, 1) | x ∈ T2}), E1 ∪ E2 ∪ E3, s, t, S1, T2)

Therefore the associativity of the composition has been proven.

Proof of the Identity Morphism
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Proof. It is now required to prove that the identity is neutral: Take m,n ∈ ob(N ) such
that (V1, E1, s, t, S1, T1) ∈ N (m,n), 1m = (V2, ∅, s, t, S2, S2) ∈ N (m,m) and
1n = (V3, ∅, s, t, S3, S3) ∈ N (n, n). We will consider in this case that graphs are equivalent
up to an isomorphism meaning that two graphs of the same structure are equal.

In the first case:

(V1, E1, s, t, S1, T1) ◦ 1m = ((V2 t V1) \ {(x, 1) | x ∈ S2}, ∅ ∪ E1, s, t, S1, T1)

= (V1, E1, s, t, S1, T1)

In the second case:

1n ◦ (V1, E1, s, t, S1, T1) = ((V1 t V3) \ {(x, 1) | x ∈ T1}, E1 ∪ ∅, s, t, S1, S3) (!)

= (V1, E1, s, t, S1, T1)

(!) Such that (∀e ∈ E1 | t(e) ∈ T1 then t(e) = f(t(e)))

Therefore the identity is neutral.

As associativity and neutrality of the identity have been shown, then the category of
simple networks has been proven.

3.7 Expanding the Category of Simple Networks to Weighted
Networks

The difference between a simple network and a flow network1 we use in this Chapter is
the fact that flow networks hold additional properties, such as each edge receives a flow and
each edge holds a maximum capacity (weight) that the flow cannot exceed.

Therefore the category that we have found for simple networks has to be adjusted so that
we can accommodate a capacity function.

We introduce the category of weighted networks in this section, then we discuss the flows
in weighted networks later in this Chapter when we will introduce the category of
observations, and we link these two categories this Chapter to characterise flow
networks.

I had to characterise what equivalency between flow networks meant. To this effect, I tried
different direct approaches that didn’t provide any positive results.

After exploring the situation with my supervisor, Samuel Mimram, we agreed to use a
category of observations to introduce progressively the notion of flow.

In practice, the only parameters guaranteed to be observable are the flows in and out of a
network. By using categories of observations, we take the novel approach to look at flow

1also known as a transportation network

16



networks only by their observable parameters. By posing this restriction, we do not limit
the usability of the results but make the proof tractable.

We will then define the category of weighted networks W by extending what we have
found for the category of simple networks N :

Definition 14. Our category of weighted networks W is then described as followed:

• ob(W) = N

• (∀)m,n ∈ ob(W), we define the morphisms W(m,n) the set of graphs

W(m,n) = {(V,E, s, t, S, T, c) | m,n ∈ ob(W)}

with m "entries" and n "exits" such that:

– V is the set of vertices of the network.

– E is the set of edges of the network.

– A function s that maps an edge to the vertex which is at the head of the edge.

– A function t that maps an edge to the vertex which is at the tail of the edge.

– S is a subset of V , called entry vertices, endowed with a specified total order2

such that |S| = m.

– T is a subset of V , called exit vertices, endowed with a specified total order3

such that |T | = n.

– S and T are disjoint non-empty subsets of V .

– c : E → R is a function that maps an edge to its corresponding weight.

Proof. The proof of the category of weighted networks works in the same way as the proof
of the category of simple networks as the capacity function does not change the line of
argument of the proof.

4 Equivalence of Flow Networks

4.1 Purpose of Study

Now that the category of weighted networks has been defined, we can study flow networks
and continue with the categorisation. We can make the observations on any graph depending
on the flow that passes on either side of the network.

Definition 15. A flow network (also known as a transportation network) is a weighted
network W with morphisms W(m,n) for m,n ∈ W, where each edge e ∈ E has a capacity
defined by the function c : E → R and each edge receives a flow. The amount of flow on an
edge cannot exceed the capacity of the edge.

2 see Observation 10
3 see Observation 10
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Regarding the definition of what we understand by the concept of Ford-Fulkerson [FF56] in
the above definition, which is a function in the Ford-Fulkerson paper from the set of arcs
(edges), to R+ subject to flow constraints (flow in = flow out, and not exceeding capacity
values), we are going to relax the definition of a flow for now.

We introduce the concept of observations, where an observation is a set

{{x1, x2, . . . , xm}, {y1, y2, . . . , yn}} ⊆ Rm × Rn

assuming that we have m "entry" vertices and n "exit" vertices in the network, and where
xi is the flow in the vertex i for 1 ≤ i ≤ m and yj is the flow out in the vertex j with
1 ≤ j ≤ n.

With this observation, we categorise flow networks as functors from the weighted network
category to the observation category, and leave the meaning from Definition 1; a flow
network is seen here as a functor between categories, rather than simply a weighted network
for our purpose.

Let us introduce the category of observations in the next section.

4.2 The Category of Observations

Definition 16. The category of observations Obs has the following sets of objects and
morphisms:

• ob(Obs) = N (natural numbers)

• (∀)m,n ∈ ob(Obs), we define the set of morphisms Obs(m,n) to be the subspace

S ⊆ Rm × Rn , S = {{{x1, . . . , xm} , {y1, . . . , yn}} | m,n ∈ ob(Obs)}

In other words, f ∈ Obs(m,n) if for any sets of real numbers {xi}i and {yj}j , indexed
by {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively, we have

{{x1, . . . , xm} , {y1, . . . , yn}} ∈ f

Definition 17. Composition of Morphisms. Let m,n, p ∈ ob(Obs). Let f ∈ Obs(m,n)
and g ∈ Obs(n, p) be morphisms.

The composition g ◦ f is the set of

{{x1 . . . xm} , {z1 . . . zp}} ∈ Rm × Rp

if there exists a set {y1 . . . yn} ∈ Rn such that

{{x1 . . . xm} , {y1 . . . yn}} ∈ f and {{y1 . . . yn} , {z1 . . . zp}} ∈ g

We write this formally as:

Obs(n, p)×Obs(m,n) = Obs(m, p) (2)
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1
x−→ •x1 •y1

y←− 1

2
x−→ •x2 •y2

y←− 2

...
... f−→ ...

...

m− 1
x−→ •xm−1 •ym−1

y←− n− 1

m
x−→ •xm •ym

y←− n

Figure 11: Sketching the morphism f

Definition 18. The Identity Morphism. For each m ∈ ob(Obs) we have an identity
morphism 1m ∈ Obs(m,m) if for any set of real numbers {xi}i, indexed by {1, 2, . . . ,m},
we have

{{x1, . . . , xm} , {x1, . . . , xm}} ∈ 1m

This morphism acts as the identity of compositions of morphisms from Definition 17.

4.3 Proving that Obs is a Category

Proof of Associativity

Proof. We want to prove that the composition of two morphisms from Obs, defined in
Definition 17, is associative:

Obs(m,n)× (Obs(l,m)×Obs(k, l)) = (Obs(m,n)×Obs(l,m))×Obs(k, l) , (3)

for k, l,m, n ∈ Obs.

Let f ∈ Obs(k, l), g ∈ Obs(l,m), and h ∈ Obs(m,n). We want to prove that

h ◦ (g ◦ f) = (h ◦ g) ◦ f . (4)

Start with the composition from left side, h ◦ (g ◦ f): by Definition 17, the composition
h ◦ (g ◦ f) is the set of

{{x1 . . . xk} , {z1 . . . zn}} ∈ Rk × Rn
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if there exists a set {y1 . . . ym} ∈ Rm such that

{{x1 . . . xk} , {y1 . . . ym}} ∈ g ◦ f and {{y1 . . . ym} , {z1 . . . zn}} ∈ h

By Definition 17 for the composition g ◦ f ,

{{x1 . . . xk} , {y1 . . . ym}} ∈ g ◦ f

if there exists a set {w1 . . . wl} ∈ Rl such that

{{x1 . . . xk} , {w1 . . . wl}} ∈ f and {{w1 . . . wl} , {y1 . . . ym}} ∈ g

We have the following pairs together:

{{x1 . . . xk} , {w1 . . . wl}} ∈ f , {{w1 . . . wl} , {y1 . . . ym}} ∈ g and {{y1 . . . ym} , {z1 . . . zn}} ∈ h

Summarising, the morphism h ◦ g ◦ f consist of all pairs

{{x1 . . . xk} , {z1 . . . zn}} ∈ h ◦ g ◦ f ⇒ h ◦ g ◦ f ∈ Obs(k, n) (5)

for which the sets {y1 . . . ym} ∈ Rm and {w1 . . . wl} ∈ Rl do exist.

Continue now with the composition from right side, (h ◦ g) ◦ f : by Definition 17, the
composition h ◦ (g ◦ f) is the set of all pairs of sets

{{x1 . . . xk} , {z1 . . . zn}} ∈ Rk × Rn

if there exists a set {v1 . . . vl} ∈ Rl such that

{{x1 . . . xk} , {v1 . . . vl}} ∈ f and {{v1 . . . vl} , {z1 . . . zn}} ∈ h ◦ g

By Definition 17 for the composition h ◦ g,

{{v1 . . . vl} , {z1 . . . zn}} ∈ h ◦ g

if there exists a set {s1 . . . sm} ∈ Rm such that

{{v1 . . . vl} , {s1 . . . sm}} ∈ g and {{s1 . . . sm} , {z1 . . . zn}} ∈ h

We have the following pairs together:

{{x1 . . . xk} , {w1 . . . wl}} ∈ f , {{v1 . . . vl} , {s1 . . . sm}} ∈ g and {{s1 . . . sm} , {z1 . . . zn}} ∈ h

Summarising, the morphism h ◦ g ◦ f consist of all pairs

{{x1 . . . xk} , {z1 . . . zn}} ∈ h ◦ g ◦ f ⇒ h ◦ g ◦ f ∈ Obs(k, n) (6)

for which the sets {v1 . . . vl} ∈ Rl and {s1 . . . sm} ∈ Rm do exist.

The equations (5) and (6) prove (4).
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Proof of the Identity Morphism

Proof. We want to prove that the identity morphism from Obs, which was defined in
Definition 18, is the identity for the composition from Definition 17.

For each m ∈ ob(Obs) we have an identity morphism 1m ∈ Obs(m,m) if for any set of
real numbers {xi}i, indexed by {1, 2, . . . ,m}, we have

{{x1, . . . , xm} , {x1, . . . , xm}} ∈ 1m

Let p, q ∈ ob(Obs) and f a morphism from Obs(p, q). For p, there is an identity morphism
1p defined as above, i.e., we have a set {x1, . . . , xp} that

{{x1, . . . , xp} , {x1, . . . , xp}} ∈ 1p

f a morphism from Obs(p, q), so we have pairs

{{x1, . . . , xp} , {y1, . . . , yq}} ∈ f

This means that

{{x1, . . . , xp} , {x1, . . . , xp}} ∈ 1p and {{x1, . . . , xp} , {y1, . . . , yq}} ∈ f

for {{x1, . . . , xp} , {x1, . . . , xp}} ∈ 1p, so

{{x1, . . . , xp} , {y1, . . . , yq}} ∈ f ◦ 1p

So f = f ◦ 1p. Similarly, 1p ◦ f = f . This concludes the proof that an identity morphism
satisfies the conditions of being the identity for the composition of morphisms.

4.4 The Functor between W and Obs

We can then define a functor F between the category of flow networks and the category
of observations so that for every network in the domain of F we can retrieve the flow
information of the network:

F :W → Obs

Definition 19. This functor consists of:

(a) A function between the objects of the categories ob(W)→ ob(Obs), where for an item
m ∈ W we have m 7→ F (m) ∈ ob(Obs). This maps a natural number to a natural
number.

(b) Taking two objects m,n ∈ ob(W), then

W(m,n) 7→ Obs(F (m),F (n))
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Observation 20. In the definition of the functor F , i.e. Definition 19, we need to explain
the action of the functor on the set of morphisms W(m,n) because W(m,n) is a set of
morphisms (not just a single morphism).

The map
W(m,n) 7→ Obs(F (m),F (n))

means that any morphism from W(m,n) maps into a morphism of Obs(F (m),F (n)), so
we need to check if it is independent of the choice of morphisms.

Observation 21. We then need the axioms of our functor to satisfy:

(c) For any objects m,n, p ∈ ob(W), the composition of two morphisms f ∈ W(n, p),
f ′ ∈ W(m,n) is

f ◦ f ′ ∈ W(m, p)

For these objects m,n, p ∈ ob(W), we have F (m),F (n),F (p) ∈ ob(Obs). Then the
composition f ◦ f ′ ∈ W(m, p) gets mapped to the composition in Obs via the functor
F in the following way:

F (f ◦ f ′) = F (f) ◦ F (f ′) , F (f) ∈ Obs(F (n),F (p)) , F (f ′) ∈ Obs(F (m),F (n))

We explain this further in the proof below.

(d) For any object m ∈ ob(W) we have an identity 1m ∈ W(m,m). Then we have an
object F (m) ∈ ob(Obs) and the corresponding identity 1F (m) ∈ Obs(F (m),F (m)).
Then

F (1m) = 1F (m)

4.5 Proving the Axioms of the Functor Between W and Obs

First, we are making the Definition 19 (b) more precise: how do we send a morphism
from W(m,n) to a morphism from Obs(F (m),F (n)) (Observation 20).

Second, we want to prove the statements in Observation 21, that complements the
properties of our functor.

4.5.1 Explaining the Second Axiom of the Functor Between W and Obs

Explaining Observation 20.

We stated in Definition 19 (b) that any for two objects m,n ∈ ob(W), then

W(m,n) 7→ Obs(F (m),F (n))

More rigorously, pick a morphism from W(m,n): this is a weighted network
(V,E, s, t, S, T, c) with m "entries" and n "exits" such that:

• V is the set of vertices of the network.

• E is the set of edges of the network.
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• A function s that maps an edge to the vertex which is at the head of the edge.

• A function t that maps an edge to the vertex which is at the tail of the edge.

• S is a subset of V , called entry vertices, endowed with a specified total order such
that |S| = m.

• T is a subset of V , called exit vertices, endowed with a specified total order such
that |T | = n.

• S and T are disjoint non-empty subsets of V .

• c : E → R is a function that maps an edge to its corresponding weight.

Let S = {s1, s2, . . . , sm} and T = {t1, t2, . . . , tn} the sets of entry vertices and exit vertices,
respectively.

The functor F send objects from S to the following set, by Definition 19 (a):

{s1, s2, . . . , sm} 7→ {F (s1),F (s2), . . . ,F (sm)}

and functor F send objects from T to the following set, by Definition 19 (a):

{t1, t2, . . . , tn} 7→ {F (t1),F (t2), . . . ,F (tn)}

Then
{{F (s1),F (s2), . . . ,F (sm)} , {F (t1),F (t2), . . . ,F (tn)}}

is a subset of Rm × Rn, hence a morphism in Obs(F (m),F (n)).

4.5.2 Proving the Properties Following the Axiom of the Functor Between W
and Obs

Here we want to prove Observation 21.

Proving Observation 21 (c): for any objects m,n, p ∈ ob(W), the composition of two
morphisms f ∈ W(n, p), f ′ ∈ W(m,n) is

f ◦ f ′ ∈ W(m, p)

For these objects m,n, p ∈ ob(W), we have F (m),F (n),F (p) ∈ ob(Obs). Then the
composition f ◦ f ′ ∈ W(m, p) gets mapped to the composition in Obs via the functor F in
the following way:

F (f ◦ f ′) = F (f) ◦ F (f ′) , F (f) ∈ Obs(F (n),F (p)) , F (f ′) ∈ Obs(F (m),F (n))

Proof. Let m,n, p ∈ ob(W). Take two morphisms from W:

(V1, E1, s1, t1, S1, T1, c1) ∈ W(m,n) and (V2, E2, s2, t2, S2, T2, c2) ∈ W(n, p)

The composition of these two morphisms is a morphism in W(m, p):

(V3, E3, s3, t3, S3, T3, c3) ∈ W(m, p) (7)
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where

V3 = (V1 t V2) \ {(x, 1) | x ∈ T1} , E3 = E1 ∪ E2 , S3 = S1 , T3 = T2 (8)

First, for (V1, E1, s1, t1, S1, T1, c1) ∈ W(m,n),

| S1 |= m , | T1 |= n , S1 ∩ T1 = ∅

Let S1 = {s11, s12, . . . , s1m} and T1 = {t11, t12, . . . , t1n} the sets of entry vertices and exit
vertices, respectively.

The functor F send objects from S1 to the following set, by Definition 19 (a):

{s11, s12, . . . , s1m} 7→ {F (s11),F (s12), . . . ,F (s1m)}

and functor F send objects from T1 to the following set, by Definition 19 (a):

{t11, t12, . . . , t1n} 7→ {F (t11),F (t12), . . . ,F (t1n)}

Then
{{F (s11),F (s12), . . . ,F (s1m)} , {F (t11),F (t12), . . . ,F (t1n)}} (9)

is a subset of Rm × Rn, hence a morphism in Obs(F (m),F (n)).

Second, for (V2, E2, s2, t2, S2, T2, c2) ∈ W(n, p),

| S2 |= n , | T2 |= p , S2 ∩ T2 = ∅

Let S2 = {s21, s22, . . . , s2n} and T2 = {t21, t22, . . . , t2p} the sets of entry vertices and exit
vertices, respectively.

The functor F send objects from S2 to the following set, by Definition 19 (a):

{s21, s22, . . . , s2n} 7→ {F (s21),F (s22), . . . ,F (s2n)}

and functor F send objects from T2 to the following set, by Definition 19 (a):

{t21, t22, . . . , t2p} 7→ {F (t21),F (t22), . . . ,F (t2p)}

Then
{{F (s21),F (s22), . . . ,F (s2n)} , {F (t21),F (t22), . . . ,F (t2p)}} (10)

is a subset of Rn × Rp, hence a morphism in Obs(F (n),F (p)).

For the morphism (7) in W(m, p):

(V3, E3, s3, t3, S3, T3, c3) = (V3, E3, s3, t3, S1, T2, c3) ∈ W(m, p)
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we have, according to (8):

| S1 |= m , | T2 |= p , S3 ∩ T3 = S1 ∩ T2 = ∅

We had S1 = {s11, s12, . . . , s1m} and T2 = {t21, t22, . . . , t2p} the sets of entry vertices and
exit vertices, respectively.

The functor F send objects from S1 to the following set, by Definition 19 (a):

{s11, s12, . . . , s1m} 7→ {F (s11),F (s12), . . . ,F (s1m)}

and functor F send objects from T2 to the following set, by Definition 19 (a):

{t21, t22, . . . , t2p} 7→ {F (t21),F (t22), . . . ,F (t2p)}

Then
{{F (s11),F (s12), . . . ,F (s1m)} , {F (t21),F (t22), . . . ,F (t2p)}}

is a subset of Rm × Rp, hence a morphism in Obs(F (m),F (p)).

Therefore, we have

{{F (s11),F (s12), . . . ,F (s1m)} , {F (t21),F (t22), . . . ,F (t2p)}}

is a morphism in Obs(F (m),F (p)) if there exists the set of flow values

{F (s21),F (s22), . . . ,F (s2n)} ∈ Rn

such that

{{F (s11),F (s12), . . . ,F (s1m)} , {F (s21),F (s22), . . . ,F (s2n)}} ∈ Obs(F (m),F (n)) (11)

and

{{F (s21),F (s22), . . . ,F (s2n)} , {F (t21),F (t22), . . . ,F (t2p)}} ∈ Obs(F (n),F (p)) (12)

We have that equation (11) is shown by equation (9) and equation (12) is shown by
equation (10).

This proves

Obs(F (m),F (p)) = Obs(F (n),F (p))×Obs(F (m),F (n))

So composition of morphisms in W is mapped by the functor F to the composition of
observations in Obs.

Proving Observation 21 (d): For any object m ∈ ob(W) we have an identity 1m ∈
W(m,m). Then we have an object F (m) ∈ ob(Obs) and the corresponding identity 1F (m) ∈
Obs(F (m),F (m)). Then

F (1m) = 1F (m)
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Proof. Let m ∈ ob(W). The identity is then a weighted network

1m = (V, ∅, s, t, S, S) ∈ W(m,m) ,

where S = T = V and E = ∅ (as shown in Figure 10 and defined in Definition 13).
Recall that we identify the entry vertices where the flows come in, S, with the exit vertices
where the flow goes out, T , because there are no edges between S and T . Both S and T are
the size of V , because the identity has no other vertices (free of flow-in or flow-out).

Then
| S |= m with S = {s1, s2, . . . sm} (= T )

The functor F sends si to F (si) ∈ ob(Obs):

S = {s1, s2, . . . sm} 7→ {F (s1),F (s2), . . . F (sm)}

and, so does with T , since T = S. Then we have the observation

{{F (s1),F (s2), . . . F (sm)} , {F (s1),F (s2), . . . F (sm)}}

in Obs(m,m), which is our identity morphism in category Obs:

1F (m) = {{F (s1),F (s2), . . . F (sm)} , {F (s1),F (s2), . . . F (sm)}}

So, identity morphism in W is mapped by F into the identity morphism in Obs.

4.6 Where is the Equivalence?

The categorisation of weighted networks W and of observation Obs has been proven
previously and it is because of the functor defined in definition 19 that we can give the
concept of flow to its respective specific weighted capacitance network. With the functor,
it is now possible to extract observations from a weighted network. Then we can define
two flow networks to be equivalent if we have the same observation of flow:

Let m,n ∈ ob(W) and f, f ′ ∈ W(m,n) two weighted networks with m vertices of entries and
n vertices of exists, then we say that the networks f and f ′ are equivalent if F(f) = F(f ′),
i.e their observations are equal.

5 Conclusion

5.1 Evaluation

In this thesis, we focused on flow networks, a class of directed graphs from a source to a
sink.

Previously the challenge of maximum flow within a network was dealt with graph theory
and resolved using linear programs. As of today, the concepts and techniques of discrete
mathematics are enriched with the novel frameworks of category theory; we applied this
framework to flow networks. Consequently, we analyzed and decomposed these
mathematical structures using directed graphs, where nodes represented objects (or sets),
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and the vertices represented the functions from an object to another. This thesis was
organized to go from a small mathematical structure, directed graphs, to a bigger one, a
weighted network, through the notion of simple networks to make sure that the different
categories along the way are well defined and also to simplify proofs when applicable.
These categories rigorously constructed, we turned our attention to categorize the meaning
of flows using a category theoretical approach, doing so through observations. Finally,
attaching the notion of flow to the category of weighted networks using functors, we could
establish specifically an equality between categories of flow networks. The main ideas that
supported the mathematical research process were those given by work on networks, and
we took great care to set out properly and correctly the properties of the network. Finally,
we were able to perform a good categorization of networks built upon its properties,
something that facilitated the work needed to determine a flow network.

The main ideas that supported the mathematical research process were those given by work
on networks, such as John Baez [Bae+20] as the thesis would have been invalid if the
properties of the network were not set out properly and correctly. A good categorization
of networks built upon its properties then facilitates the work needed to determine a flow
network.

In our thesis, the most important demonstrations were the ones required for the category of
observations. In effect, without a properly defined category that satisfied the axioms needed,
no functor would have been able to be created to relate a flow to a network, thus rendering
a weighted network useless.

In the end, despite the main problems raised during the research process (having to deal
with an infinity of maximum flows), the decisions taken (having to create the category of
observations necessary to introduce the notion of flow), we hope that other researchers will
find rigorous enough materials in this thesis to establish the presentation of the category
of flow networks. Equipped with it, hopefully they will ultimately be able to construct a
generator of optimized flow networks which, according to the lifelong dedication from S.
MAC LANE and S. EILENBERG, would significantly unify, clarify and render efficient the
complexity of the systems in question.

5.2 Further Directions

The next step in this thesis would be to prove the monoidality of the flow network that we
have defined. This would show that we can compose the networks not only horizontally but
also vertically, by applying a tensor on two morphisms f and g to form f ⊗ g as described
by John Baez [bae16]. This would mean being able to construct more intricate networks
than just a line of networks.

After proving the monoidalitic properties of the flow network, similarly to Yves Lafont
[Laf03] with boolean circuits, we would transition to the presentation of the category of flow
network. Building a presentation means finding a set of generators and a set of relations
between the generators. This means that with a presentation, we would be able to generate
any flow networks, a step that is much needed if we were working with optimization problem
such as finding the maximum flow.

After having found the presentation, a possible area to generalize further would be to
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construct a subcategory of optimal flow networks with constraints. This would extend the
category of flow network to then categorize what an optimal flow in a network represents,
a result which could then be coupled with rewriting theory and applied on notions of
complexity theory in relations to maximum flow.

Finally, to complete the main proof of this thesis, we had to restrict it to the networks that
are observable to be able to use a category of observation. Removing this limitation would
generalize the results to the networks that are not observable. It doesn’t change the use of
the result in practice but makes this proof a more robust stepping stone for future work in
the field.
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